В. В. КАЛЬЧЕНКО, канд. техн. наук, технол. ун-т (Чернигов)

ЗD МОДЕЛИРОВАНИЕ ПРОФИЛИРОВАНИЯ КРУГА, СЪЁМА ПРИПУСКА И ФОРМООБРАЗОВАНИЯ ПРИ ШЛИФОВАНИИ НАРУЖНЫХ ТОРОВЫХ ПОВЕРХНОСТЕЙ СО СКРЕЩИВАЮЩИМИСЯ ОСЯМИ ИНСТРУМЕНТА И ДЕТАЛИ

Розроблено спеціальні тривимірні геометричні моделі процесів зняття припуску, формоутворення і профілювання абразивних кругів при шліфуванні зовнішніх торових поверхонь на верстатах з ЧПК. Запропоновано метод керування процесом їх шліфування, що забезпечує зняття припуску по еквідістантним кривих

Шлифование наружных торовых поверхностей, например, внутренних колец шарикоподшипников, осуществляют методом копирования абразивным кругом с профилем, соответствующим образующей детали [1]. Съём припуска производят за счёт поперечного перемещения круга в плоскости, в которой расположены оси вращения его и детали. В процессе съёма припуска глубина резания, длина и площадь контакта круга и детали изменяются по координате обработки профиля, величина врезания инструмента в направлении, перпендикулярном оси вращения детали больше припуска на обработку, что снижает производительность и качество шлифования.

Предложен способ шлифования наружных торовых поверхностей со скрещивающимися осями абразивного круга и детали, который обеспечивает съём припуска по эквидистантным кривым [2].

Для повышения эффективности шлифования наружных торовых поверхностей со скрещивающимися осями инструмента и детали необходимо разработать специальные трёхмерные математические модели съёма припуска, формообразования и профилирования абразивного круга. На базе моделей создать метод управления процессом шлифования на станках с ЧПУ, который обеспечит постоянную глубину резания по координате обработки профиля и величину врезания круга, равную припуску, что повысит производительность и качество шлифования. Съём припуска по эквидистантным кривым требует специального профилирования абразивного круга 1 (рис.1) и управляемых, функционально согласованных его поворота на угол ψ относительно оси $O_c Y_{cr}$ и поперечной подачи t вдоль неё в процессе шлифования детали 2.

Специальную 3D модель профилирования круга при шлифовании наружных торовых поверхностей получим из разработанной нами [3] общей 3D модели поверхностей кругов при шлифовании со скрещивающимися осями инструмента и деталей.

$$\bar{r}_{u} = M_{6}(\theta_{k}) \cdot M_{5}(\psi) \cdot M_{2}(Y_{c}) \cdot M_{6}(-\theta) \cdot M_{1}(R) \times \\ \times M_{5}(\psi_{q}) \cdot M_{3}(-\rho) \cdot e_{4}$$
(1)

где $\bar{r_u}$ – радиус-вектор точек поверхности шлифовального круга; M_1, M_2, M_3 – матрицы линейных перемещений вдоль осей X, Y, Z; M_4, M_5, M_6 – матрицы угловых поворотов относительно осей X, Y, Z [4]; ψ_q – угловой параметр точки образующей осевого сечения детали 2 (рис. 1, A-A) относительно оси $O_n Y_n$ системы координат $O_n X_n Y_n Z_n$; R – радиус начала координат $O_q X_q Y_q Z_q$ детали; θ – угловой параметр, определяющий положение оси $O_q X_q$, при повороте её относительно оси $O_q Z_q$ детали; Y_c – координат $O_q X_q Y_q Z_q$ детали 2 в системе координат $O_c X_{cT} Y_{cT} Z_{cT}$ станины; ψ – угол поворота оси $O_u Z_u$ вращения шлифовального круга 1 в вертикальной плоскости относительно оси $O_u Y_u$, совпадающей с осью $O_c Y_{cT}; \theta_k$ – угловой параметр, определяющий положение точки на поверхности круга 1 в его системе координат $O_u X_u Y_u Z_u$; e₄ = (0,0,0,1)^T;

При однопараметрическом огибании [4] связь между параметрами ψ_q , θ и τ_q имеет вид равенства нулю смешанного произведения трёх векторов частных производных вектора r_u .

$$\left(\frac{\partial \bar{r}_u}{\partial \psi_q} \times \frac{\partial \bar{r}_u}{\partial \theta}\right) \cdot \frac{\partial \bar{r}_u}{\partial \tau_q} = 0, \qquad (2)$$

где $\frac{\partial \bar{r}_u}{\partial \psi_q} \times \frac{\partial \bar{r}_u}{\partial \theta} = \bar{N}_q$ – вектор нормали к поверхности детали в точке с кри-

волинейными координатами ψ_q , θ ; $\frac{\partial \bar{r}_u}{\partial \tau_q} = \bar{V}_q$ – вектор скорости относи-

тельного движения детали 2 (рис. 1) относительно круга 1; τ_q – время перемещения детали, при повороте её на угол θ_{κ} в инверсионном движении относительно оси $O_{\mu}Z_{\mu}$ круга.

$$\frac{\partial \bar{r}_{u}}{\partial \tau_{q}} = \frac{\partial M_{6}(\theta_{\kappa})}{\partial \theta_{\kappa}} \cdot \frac{\partial \theta_{\kappa}}{\partial \tau_{q}} \cdot M_{uq}, \qquad (3)$$

где $\frac{\partial \theta_{\kappa}}{\partial \tau_{q}} = \omega_{uq}$ – угловая скорость поворота детали относительно оси круга;

 M_{uq} – матрица перехода из системы координат детали в систему координат круга.

$$M_{uq} = M_5(\psi) \cdot M_2(Y_c) \cdot M_6(-\theta) \cdot M_1(R) \times \\ \times M_5(\psi_q) \cdot M_3(-\rho) \cdot e_4$$
(4)

Скалярное произведение векторов \overline{N}_q и \overline{V}_q находим, вычислив определитель

Рис. 1 - Схема шлифования наружных торовых поверхностей со

скрещивающимися осями круга и детали

$$\overline{N}_{q} \cdot \overline{V}_{q} = \begin{vmatrix} X_{V_{q}} Y_{V_{q}} Z_{V_{q}} \\ X_{\psi_{q}} Y_{\psi_{q}} Z_{\psi_{q}} \\ X_{\theta} Y_{\theta} Z_{\theta} \end{vmatrix} = 0,$$
(5)

где $X_{V_q}, Y_{V_q}, Z_{V_q}$ – координаты вектора $\overline{V_q}$; $X_{\psi_q}, Y_{\psi_q}, Z_{\psi_q}$ – координаты вектора касательной $\overline{A}_q = \frac{\partial \overline{r_u}}{\partial \psi_q}$; $X_{\theta}, Y_{\theta}, Z_{\theta}$ – координаты вектора ка-

сательной
$$\overline{B}_q = \frac{\partial \overline{r}_u}{\partial \theta}$$

Подставив в (4) дискретное значение угла ψ_{qi} и в (3) – $\theta_{\kappa} = 0$, из (5) определяем величину угла θ и затем из уравнения (1) – радиус – вектор \bar{r}_{ui} точки, принадлежащей линии контакта детали и круга в его системе координат

$$\bar{r}_{ui} = \left(X_{\psi_{qi}}, Y_{\psi_{qi}}, Z_{\psi_{qi}}, 1\right)^{T},$$
(6)

где $X_{\psi_{qi}}, Y_{\psi_{qi}}, Z_{\psi_{qi}}$ – координаты точки линии контакта.

Радиус R_i осевого сечения круга 1 (рис. 1, А-А) при $X_u = 0$ в пределах i -той точки равен

$$R_{i} = \sqrt{X_{\psi_{qi}}^{2} + Y_{\psi_{qi}}^{2}}, \qquad (7)$$

Осевая координата

$$Z_i = Z_{\psi_{qi}} \,. \tag{8}$$

Из уравнений (1) и (5) определяют радиус-вектор \bar{r}_u , который описывает множество инструментальных поверхностей. Выбор рациональной осуществляют на основании анализа геометрических параметров наружной торовой поверхности детали, заготовки и снимаемого припуска δ (рис. 1). Радиус-вектор осевого сечения круга \bar{r}_{u0} , при $X_u = 0$, в системе координат $O_n X_n Y_n Z_n$, где ось $O_n Y_n$ совпадает с центром радиуса ρ_3 заготовки (рис. 1, A-A), равен

$$\bar{r}_{3u} = M_2 (Y_c + \delta - R) \cdot \bar{r}_{u0}, \qquad (9)$$

где $\bar{r}_{\mu 0} = (0, R_i, Z_i, 1)^T$.

Радиус кривизны $\rho_{\kappa i}$ (рис. 1, А-А) осевого сечения круга в системе координат О_пХ_пY_пZ_п находят из соотношения

$$\rho_{ki} = \sqrt{R_{3i}^{2} + Z_{3i}^{2}}, \qquad (10)$$

где $R_{_{3i}}$ и $Z_{_{3i}}$ – радиус круга и его осевая координата определяются из радиус-вектора $\bar{r}_{_{3\mu}}$ (9)

$$\bar{r}_{_{3u}} = (0, R_{_{3i}}, Z_{_{3i}}, 1)^T.$$
(11)

Радиус кривизны ρ_{κ} (рис. 1, А-А) осевого сечения круга зависит от угла ψ его поворота при правке. При $\psi = 0$, $\rho_{\kappa} = \rho$ детали, линия контакта её и круга лежит в горизонтальной плоскости (рис. 2). С увеличением у линия контакта L удлиняется, выходя из осевой плоскости детали, ρ_{κ} и высота круга Н (рис. 1, А-А) уменьшаются. Это даёт возможность управлять текущим радиусом кривизны ρ₃ осевого сечения заготовки в процессе съёма припуска δ. Специальную 3D модель обрабатываемой наружной торовой поверхности получим из разработанной нами [5] общей 3D модели обрабатываемых поверхностей при шлифовании со скрещивающимися осями кругов и деталей.

Рис. 2 – Схема определения линии контакта шлифовального круга и детали

$$\bar{r}_{qu} = M_6(\theta) \cdot M_2(-Y_c - a \cdot \theta) \cdot M_5(-\psi) \cdot M_3(Z_i) \cdot M_6(\theta_{\kappa}) \times M_2(R_i) \cdot e_4$$
(12)

где \bar{r}_{qu} – радиус-вектор точек наружной обрабатываемой торовой поверхно-

сти; $a = \frac{t}{2\pi}$ – постоянная архимедовой спирали, по которой, в относи-

тельном движении, перемещается круг при съёме припуска δ; t – величина поперечной подачи круга 1 в направлении, перпендикулярном оси О_аZ_а вращения детали на один ее оборот; Ri; Zi – радиус осевого сечения круга 1 в переделах і-той точки профиля и его осевая координата. Значения других параметров в уравнении (12), аналогичны приведенным в уравнении (1).

Связь между параметрами і, θ_k и τ_k в уравнении (12) при однопараметрическом огибании имеет вил

$$\left(\frac{\partial \bar{r}_{qu}}{\partial i} \times \frac{\partial \bar{r}_{qu}}{\partial \theta_k}\right) \cdot \frac{\partial \bar{r}_{qu}}{\partial \tau_k} = 0, \qquad (13)$$

где $\frac{\partial \overline{r}_{qu}}{\partial i} \times \frac{\partial \overline{r}_{qu}}{\partial \theta_k} = \overline{N}_k$ – вектор нормали к поверхности круга в точке с ко-ординатами i, θ_k ; $\frac{\partial \overline{r}_{qu}}{\partial \tau_k} = \overline{V}_k$ – вектор скорости относительного движения

круга 1 (рис. 1) относительно детали 2; т_к – время поворота круга на угол θ в инверсионном движении относительно оси O_qZ_q детали.

$$\frac{\partial \bar{r}_{qu}}{\partial \tau_k} = \frac{\partial M_6(\theta)}{\partial \theta} \cdot \frac{\partial \theta}{\partial \tau_k} \cdot M_{qu}, \qquad (14)$$

где $\frac{\partial \theta}{\partial \tau_{\nu}} = \omega_{qu}$ – угловая скорость поворота круга относительно оси детали;

 $M_{\it qu}$ – матрица перехода из системы координат круга в систему координат детали.

$$M_{qu} = M_2(-Y_c - a \cdot \theta) \cdot M_5(-\psi) \times \times M_3(Z_i) \cdot M_6(\theta_k) \cdot M_2(R_i)$$
(15)

Скалярное произведение векторов \bar{N}_k и \bar{V}_k находим, вычислив определитель

$$\overline{N}_{k} \cdot \overline{V}_{k} = \begin{vmatrix} X_{\nu k} Y_{\nu k} Z_{\nu k} \\ X_{i} Y_{i} Z_{i} \\ X_{\theta k} Y_{\theta k} Z_{\theta k} \end{vmatrix} = 0, \qquad (16)$$

где X_{vk}, Y_{vk}, Z_{vk} – координаты вектора \overline{V}_k ; X_i, Y_i, Z_i – координаты вектора касательной $\overline{A}_k = \frac{\partial \overline{r}_{qu}}{\partial i}$; X_{qk}, Y_{qk}, Z_{qk} – координаты вектора касатель-

ной
$$\overline{B}_k = rac{\partial \overline{r}_{qu}}{\partial \theta_k}$$
.

Подставив в (15) для і-той точки значение радиуса круга R_i и его осевую координату Z_i и в (14) – угол θ поворота круга относительно оси детали, после вычисления определителя (16), находим величину угла θ_k . За тем из уравнения (12) определяем радиус-вектор \bar{r}_{qui} точки, принадлежащей линии контакта круга и детали в ее системе координат для заданного угла θ

$$\overline{r}_{qui} = (x_{qui}, y_{qui}, z_{qui}, l)^T,$$
(17)

где *x_{aui}*, *y_{aui}*, *z_{aui}* – координаты точки линии контакта.

Для описания обрабатываемой поверхности, получаемой за один оборот инверсионного движения круга относительно детали, необходимо в уравнения (12), (14), (15), (16) подставить значения угла θ в диапазоне: θ =0÷2 π , тогда радиус-вектор

$$\bar{r}_{qu} = (x_{i\theta}, y_{i\theta}, z_{i\theta}, I)^T, \qquad (18)$$

где $x_{i\theta}$, $y_{i\theta}$, $z_{i\theta}$ – координаты точки обрабатываемой поверхности с независимыми параметрами i, θ .

Радиус-вектор осевого сечения обрабатываемой поверхности получим из (18) при $X_{i,\theta}=0$

$$\bar{r}_{qoi} = (0, R_{qi}, Z_{qi}, I)^T$$
, (19)

где $R_{qi} = Y_{i,\theta}$ – радиус осевого сечения для і-той точки профиля; $Z_{ai} = Z_{i,\theta}$ – его осевая координата.

Радиус-вектор осевого сечения (19) в системе координат О_пX_nY_nZ_n равен

$$\bar{r}_{3oi} = M_2(R) \cdot \bar{r}_{qoi}, \qquad (20)$$

Радиус кривизны ρ_{3i} (рис. 1, А-А) осевого сечения обрабатываемой поверхности в системе координат $O_n X_n Y_n Z$ определяют по формуле

$$\rho_{3i} = \sqrt{R_{30i}^2 + Z_{30i}^2} \,, \tag{21}$$

где R_{30i} и Z_{30i} – радиус осевого сечения заготовки и ее осевую координату находят из выражения радиуса – вектора (20).

$$\bar{r}_{30i} = (0, R_{30i}, Z_{30i}, I)^T.$$
 (22)

Радиус кривизны ρ_{3} (рис. 1, A-A) осевого сечения заготовки зависит от текущих значений угла ψ поворота круга и расстояния 1 между осями круга $O_{\mu}Z_{\mu}$ и детали $O_{q}Z_{q}$

$$l = Y_c + a \cdot \theta, \qquad (23)$$

где $a \cdot \theta = \delta$ – снимаемый припуск.

В процессе формообразования поверхности детали 2, когда припуск снят, $\delta=0$ и l=Y_c (23), а угол поворота круга при правке ψ_{n} равен углу поворота при формообразовании ψ_{ϕ} , радиус кривизны обрабатываемой поверхности ρ_{3i} (21) равен радиусу ρ тора (рис. 1, A-A, III) и геометрическая погрешность [6] формообразования $\Delta_{\phi}=\rho_{3i}-\rho=0$.

Перед съемом припуска δ инструментальную поверхность рассчитывают (1) для такого углового положения ψ_{n} круга 1, чтобы его радиус кривизны ρ_{k} (11) осевого сечения был меньше радиуса ρ_{3} заготовки (рис. 1, А-А, I) при параллельных осях $O_{\mu}Z_{\mu}$ круга 1 и $O_{q}Z_{q}$ детали 2. Определение текущего угла ψ положения круга в процессе съема припуска (рис. 1, А-А, II) который обеспечивает минимальное отклонение Δ радиуса кривизны ρ_{si} радиального сечения обрабатываемой поверхности от заданного в виде дуги окружности (ρ_{si} - (ρ – t) = Δ_{dmin}) осуществлялось по методике, приведенной в работе [6].

Разработаны специальные трехмерные геометрические модели процессов съема припуска, формообразования и профилирования абразивных кругов при шлифовании наружных торовых поверхностей на станках с ЧПУ со скрещивающимися осями инструмента и детали. Предложен метод управления процессом шлифования, который обеспечивает съем припуска по эквидистантным кривым. Постоянная глубина резания по координате обработки профиля достигается за счет синхронного поворота и врезания круга на величину припуска на обработку, что повышает производительность шлифования.

Список литературы: 1. Эльянов Э.Д. Шлифование в автоматическом цикле. – М.: Машиностроение, 1980. 101 с. 2. Способ шлифования желоба на круглой детали: А. С. 1301660 СССР, МКИ В24В 19/06./ В.И. Кальченко, А.Г. Шеша. № 3973158/31–08; Заявлена 10.11.85; Опубл. 07.04.87, Бюл. №13.– 4с. 3. Кальченко В.В. Общая трехмерна (3D) модель поверхностей кругов при шлифовании со скрещивающимися осями инструмента и деталей / Вісник Національного технічного університету "Харківський політехнічний інститут": Збірка наукових праць. Тематичний випуск: Технології в машинобудуванні. – Харків: НТУ "ХПІ". – 2001. № 6.–с. 114–118.

4. Решетов Д. Н., Портман В.Т. Точность металлорежущих станков. – М.: Машиностроение, 1986. – 336 с. **5.** Кальченко В.В. 3D моделирование обрабатываемых поверхностей при шлифовании со скрещивающимися осями кругов и деталей / Високі технології в машинобудуванні. 36. Наук. Праць НТУ "ХПІ". – Харків. – 2001. вип. 1 (4). – с. 149 – 153. **6.** Кальченко В.В. Трехмерное геометрическое моделирование погрешности шлифования поверхностей со скрещивающимися осями кругов и деталей / Везание и инструмент в технологических системах. Межд. Научн. – техн. Сб. – Харьков: НТУ "ХПИ". – 2001. вып. 60. с. 90 – 95.

Представлена докт. тех. наук Перепелицей Б.А.