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The technique of finite element modeling in integral Fourier transform frequency space is applied to the problem of ac-
tive damping of nonstationary vibration in a beam with piezoelectric patches. The optimal value of a feedback control pa-
rameter by maximum damping criterion is found.
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Jlna eupiwients 3a860anHA AKMUBHO20 0eMNPIPY8aAHHS HeCMAYIOHAPHUX KOIUBAHb OAIKU 3 N €30€IeKMPUYHUMU HAKAA0-
Kamu 3acmoco8aHO Memoduky CKIHYEHHO-E/IeMEHMHO20 MOOENIO8AHHS Y yacmomuomy npocmopi iHmezpaﬂbHux nepemeo-
penb Dyp’e. 3uaiideHo onmumManbHe 3HAYEHHA Kepylou020 napamempa 360POMHO20 36 A3KY 34 KPUMEPIEM MAKCUMATbHO20
OdemngipysanHs.

Knrouosi cnosa: necmayionapni konueanHs, akmusHe demngipyeanns, Smart-xoncmpyxyis, nepemeopenns ®@yp’e.

ﬂﬂﬂ peuterusi 3a0a4u  aKmMueHO20 Oe/unqbupoeauwz HecmayuoHapHsulxX KO]le6aHmZ 6aﬂ1<u C Nbe30IEKMPUHECKUMU
HAKAAOKaAMU npumenena MEMoOUKa KOHEUHO-INeMEHMHO20 MO@&'ZupOBaHu}l 6 HacmomHoOM NpocmpaHcmee UHmezcpailbHblx
npeobpazosanuti Pypve. [Ipogeder nouck onmumanrbHO20 3HAUEHUs napamempa oOpaAmHOU C8:A3U NO KPpUmepuro Makcu-
MANbHO20 OeMNUposaHusl.

Knrouesvie cnosa: necmayuonapHvie Konedarnus, akmusHoe oemnguposarue, Smart-koncmpyxkyus, npeobpasosarie Pypue.

Introduction. The passive damping of nonstationary vibration in a beam with electrovis-
coelastic dissipative patches was studied in [1]. The application of piezoelectric elements with
connected electric circuits (RL-shunts) was shown to decrease the reaction of structures to the
impact of nonstationary loads. Dissipation of the vibration energy is conducted at the electro-
passive elements (sensors) and RL-shunts due to conversion of electric energy into heat.

In recent years the methods of active damping using active and passive piezoelectric ele-
ments — sensors and actuators [2—7], became intensively employed for damping of vibration
in thin-shelled structure elements. Different modes of applying voltage to the active elements
to effect the structure are being used. In particular, the calculated beforehand potential differ-
ence is applied using a control device to the actuator, to compensate vibration on a specific
frequency [5-7].

The adjusting of the potential difference on the electrodes of the actuator ¢, can be done

considering the indications of sensor ¢. In fig. 1 the schematic circuit of connecting a sensor

and an actuator that have reverse polarization in a circuit of negative feedback is shown.
Aside from this scheme, an RL-shunt is connected to the passive piezoelectric elements of the
viscoelastic material PVDF.
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Fig. 1. Schematic circuit of active damping of a structure fragment

Different algorithms of feedback are considered in [6]. In this paper the actuator potential

is governed by the rule:

9y =—Gos, 1)
where G is a coefficient of amplifying the derivative of a sensor potential by time (control
parameter). This coefficient influences the inertial and dissipative characteristics of a beam.

To efficiently implement the active control of vibration, a particularly important issue is to
consider the dissipation of energy by methods that are based on real physical dependencies for
structure materials and piezoelectric materials. The existing papers on vibration control most-
ly omit these dependencies for several reasons. However, the experiments [8] prove that pas-
sive and active piezoelectric elements under dynamic loads behave as viscoelastic materials. It
is shown in [9; 10] that the analysis of nonstationary vibration in imperfectly elastic structures
can be efficiently conducted by the frequency finite element method (FFEM) [11], which per-
forms the synthesis of structures and the analysis of vibration in Fourier integral transform
space. The advantages of this method are the capability to take into account the dependencies
of the linear theory of hereditary environments, including the correct introduction of frequen-
cy-dependent complex modules, and the capability to analyze nonstationary vibration with
given initial conditions. The conversion to frequency space also significantly simplifies the
synthesis of structures from piezoelectric materials.

Mathematical model. The complexity of problems requires the application of approxi-
mate methods. The synthesis of the finite element beam model with passive electroviscoelas-
tic patches was conducted by the FFEM [1]. In case of active vibration control, the finite ele-
ment version of differential equations for balance and quasi-static equations of linear
electroelasticity is supplemented with the equations for the sensor (s) and the actuator (a). The
dynamics equations, received by the application of variational Hamilton-Ostrohradsky princi-
ple, after the integral Fourier transform will look like the equations of the linear elasticity the-
ory with complex modules:

(wEMG + Rua + RZW(ZS + Rﬁ(/)&a = Iz(w:+f ,

Ks, U-KSp, =Q, o , )

Kz, U+K23, =Q, €,
where M and pr(a) are matrices of mass and electric “stiffness” of sensor (actuator) respec-
tively, Rjﬁp“) and R;(uw O > Rgfpa)T € _ are matrices that correspond to the direct and reverse
piezoelectric effect respectively:

ab ab
M =h[ [N, pN,dydx, K, € 3=h [ [@N, TC AN,dydx,
00 00
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ab ab
Ki® €o = [ [@N, T8 TVN, dydx, K@ € =h[ [N, TR IN, dydx, (3)

wab
F& > [[[VNIp €. y.t 3xp €iot Jydxdt,
00

0

wab

Quw @ > [[[VNIa € y.t 3xp €ict Jydxd,

000
where Cqo =C'@ FiC" @ _is the matrix of frequency-dependent complex elastic modules;
€0 @ Yie"G , k@ k' G Fix" @ _are the matrices of complex piezoelectric and die-
lectric modules respectively; p is material density; h is the width of a finite element;
p(x, y,t) =(p, p,)" is external load g, y,t = (q, q,)"; F& y_is the Fourier image of

external mechanical load,; és(a) ((,y: is the image of nodal charges vector; U, O are the

images of mechanical displacements and potentials of a sensor (actuator) in Fourier space re-
spectively; f =ioMu(0)+ Mu(0), where u(0), u(0) are the initial velocities and displace-

ments of nodal points respectively; i = J-1.

The application of Hamilton-Ostrohradsky variational principle gives the approximate re-
sult [12]. The more correct transition method, based on variational equations in convolutions,
equations of hereditary viscoelasticity theory and further Fourier transform, is applied in pa-
pers [10; 13].

In frequency space the equation (1) becomes:

(Ba = _imG(Bs- (4)
The difference of potentials, necessary to apply to the actuator electrodes, is determined
from the system (2):

s = —i0GKS K3, U. ©)
Thus we get an equation in respect to images of mechanical displacements:
Z(wﬂzlz(co:, (6)

where Z (0): is a dynamic stiffness matrix

~ ~ ~ ~ N ~ L~ ~ 1~
Z@ > -0?M+K, +K5, O, & FKS K, —ioK2 GKS TKS, . ©)

The solution of the linear algebraic system of equations (2) in respect to displacements in
frequency space can be written as:

U= Z(mjlﬁ(a):. (8)

After we determine the displacements, the return to the time space is done by the discrete
reverse Fourier transform, namely the fast Fourier transform (FFT):

u=FFT € F . )

To analyze the dissipation of vibration energy in a structure, the eigenvectors and eigen-
values of a dynamic stiffness matrix need to be determined from the requirement

‘Z (0)]]: 0. (10)

The decrement is defined by the formula:
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A=2rn2k, (11)
Oy
where oy, o, are the real and imaginary frequencies on the k -th vibration form respectively.

The calculation for a beam with active piezoelectric patches. Let’s consider an exam-
ple of calculating the nonstationary vibration of a beam [1] with active viscoelastic piezoelec-
tric patches.

The beam parameters:

—length 1 =0,7m;

—width b=20-103m;

— the main bearing structure thickness s =6-10"3m;

kg |

— material density p=2,7-10° —3
m

— the elasticity module of the bearing layer E = 6,71-10'°. 1+i.0,025 Pa.

The patch parameters of the viscoelasic piezocomposite material based on PVDF and PZT:
— patch length 1) =0,1m;

—width b, =20-10°m;

— thickness s, =3-10°m,;

— material density p, =1, 75-10° kg/m3 ;

— real and imaginary components of the elasticity modules matrix for the piezoelectric ma-
terial: Cj; =15,7-10%- 1+-0,064 Pa, C3; =9,30-10°- 1+i-0,098 Pa,

C33=13,6-10°- 1+i-0,069 Pa, Cs5 =2,52-10°- 1+i-0,014 Pa;

— piezoelectric modules: €31 =—10- 1-i .8,3-107° C/m2 , e33=15 C/m2 ,
o5 =113 1-i-2,1:10° ¢/m?;

— the components of dielectric properties matrix: «q1/xq=12,7- 1-i-4,7-107°

K11/Ko =118+ 1-i-1,210° , «,=8,85-1012 F/m.

Parameters of the fast Fourier transform: number of points N =1000 on the time interval
T =0,4s.

The solution of the problem is considered for two cases:

1) passive damping by RL-shunts. In this case the matrix of dynamic stiffness looks like:

Z@ E-oM+K, +K3, €, @ 3K K, (12)

2) active damping of nonstationary vibration in a beam. In this case the matrix of dynamic
stiffness (7) is used.

The reaction of the beam to a shock load is given in fig. 2, a. The frequency response is
given in fig. 2, b.
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Fig. 2. Reaction of the beam to a shock load (a); frequency response (b)

Decrement of nonstationary vibration in case of active damping equals A =0,0203.

Optimization of the feedback control parameter. As shown in [13], the choice of opti-
mal parameters for a passive shunt can increase the speed of vibration fading in structures un-
der dynamic loads. Let’s consider the problem in case of active damping of nonstationary vi-
bration. This optimization problem lies in calculating the project parameter G by the criterion
of maximum damping, taking into account the constraints on characteristics of control devic-
es. The given optimization task can be formulated as a generalized nonlinear programming
problem [10]:

max AG,u . (13)
The constraints for the project parameters
Gpin <G <Gy, , (14)

are chosen regarding the technical characteristics of devices that implement the selected feed-
back algorithm.

The optimal goal function value was found in 14 iterations using the fmincon program
[14]. The reaction of the beam to a shock load and the frequency response for the optimal val-
ue G, are shown in fig. 3.
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Fig. 3. Reaction of the beam to a shock load (a) and frequency response (b) for an optimal value
of the amplification coefficient G, = 10~

The decrement of nonstationary vibration in case of active damping with optimal control
parameter G, equals A, =0,4808.

Conclusions. The results of calculating the nonstationary vibration of a piezoelectric
beam with active electroviscoelastic elements lead us to a conclusion that using sensors and
actuators, working in opposition, can provide significant decrease of vibration amplitude for a
given type of structure. The application of active damping technique allows to change the vi-
bration decrement of a structure by regulating the amplification coefficient G . The efficiency
of this technique depends on the accuracy and stability of devices that provide the feedback of
sensor and actuator. It is important to note that the optimal value of the control parameter
Gope resulted in practically negligible level of resonant beam vibration.

The finite element analysis in Fourier transform space can be applied for studying the be-
havior of active piezoelectric structures and composites, based on them, under shock loads.
The advantages of this technique are the possibility to determine the reactions to external
loads and take into account the dependencies between frequency and physical characteristics
of a material. The return to the time space is done only at the last step of calculations.
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